

Alternative random models of the zeros of the Riemann zeta function

Alex Dobner

October 13, 2025

Background: the Riemann zeta function

Riemann zeta function: $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ for $\operatorname{Re}(s) > 1$.

Analytic continuation: $\zeta(s)$ extends to a meromorphic function on \mathbb{C} with a simple pole at $s = 1$.

Nontrivial zeros: $\zeta(s)$ has infinitely many zeros in the critical strip $0 < \operatorname{Re}(s) < 1$.

Riemann Hypothesis (RH): All nontrivial zeros of $\zeta(s)$ lie on the critical line $\operatorname{Re}(s) = \frac{1}{2}$.

Imaginary parts of the first few nontrivial zeros:

14.1347..., 21.0220..., 25.0108..., 30.4249..., 32.9351..., ...

Imaginary parts of the zeros

Write the zeros as $\frac{1}{2} + i\gamma$. (RH $\iff \gamma \in \mathbb{R}$.)

Locations of all $0 < \gamma < 100$:

$500 < \gamma < 600$:

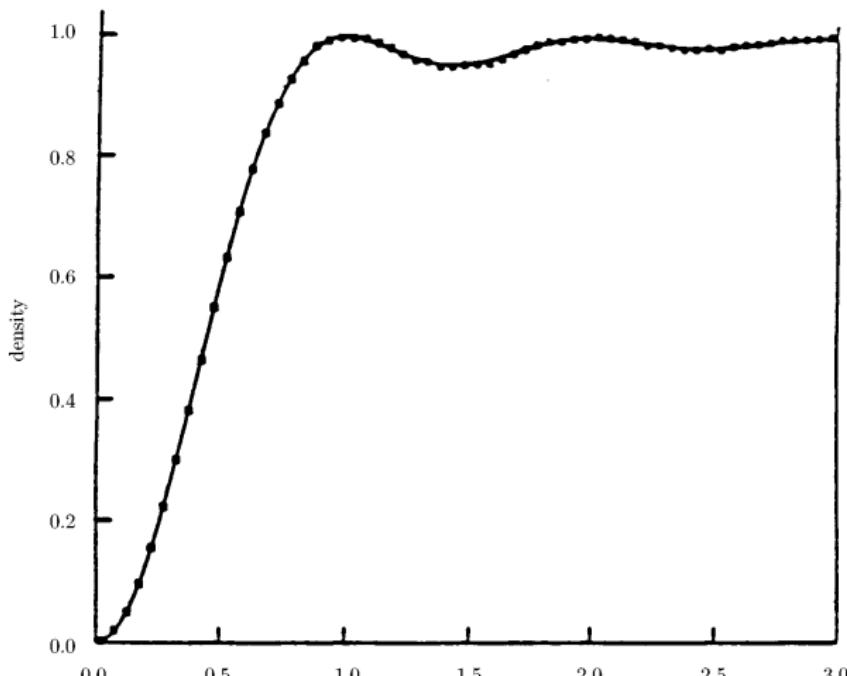
$5000 < \gamma < 5100$:



When $\gamma \approx T$, the mean spacing between consecutive zeros is $\sim \frac{2\pi}{\log(T/2\pi)}$.

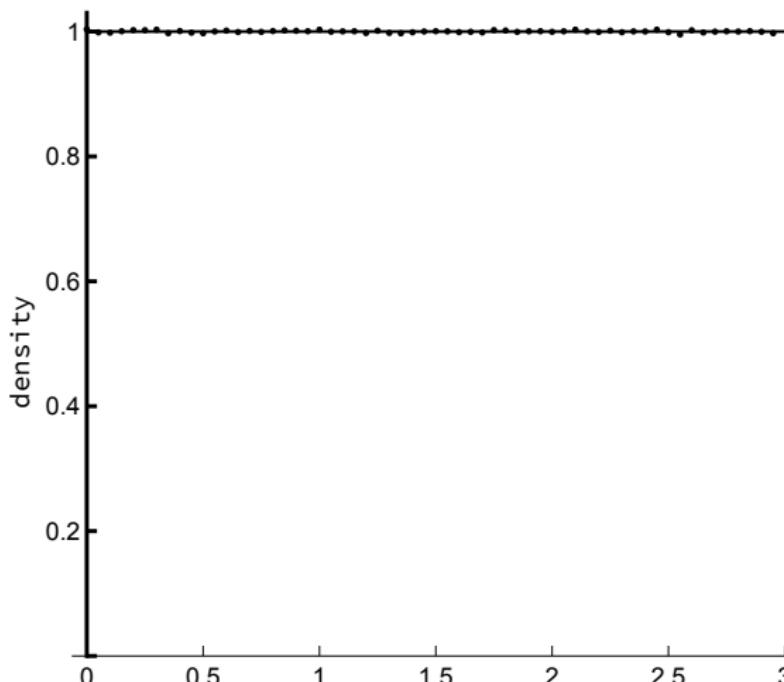
How are the γ 's distributed? Are they independent of one another? **No!**

Normalized gap distribution of zeta zeros

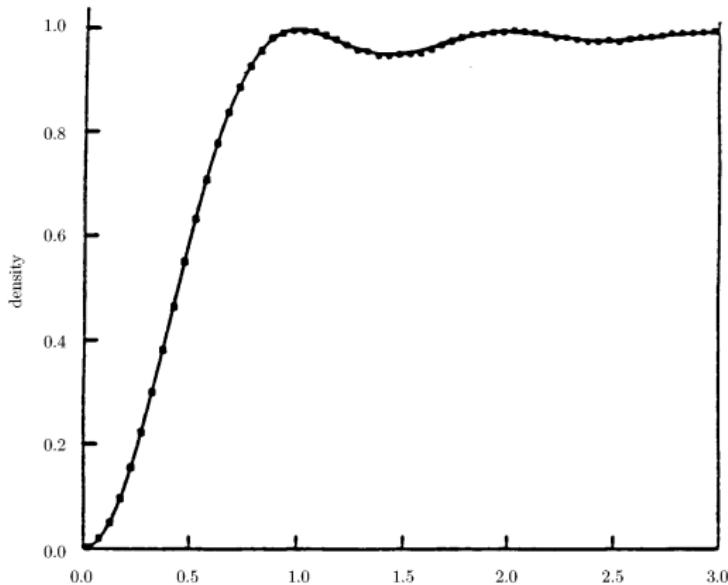


Distribution of normalized distances between pairs of 8×10^6 zeros near height $T = 10^{20}$. (Image by Katz & Sarnak using data of Odlyzko.)

Compare this with:



Distribution of distances between pairs of 10^7 reals chosen independently and uniformly in $[0, 10^7]$.



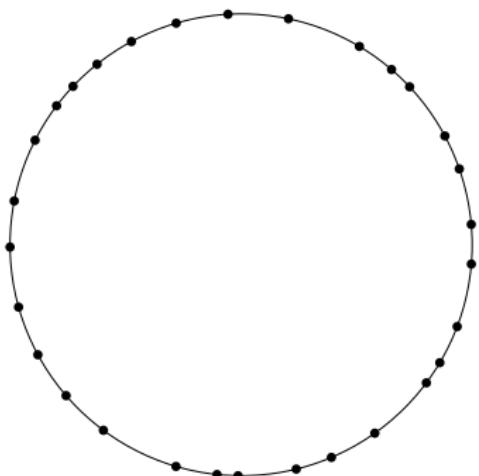
Distribution of normalized distances between pairs of 8×10^6 zeros near height $T = 10^{20}$. (Image by Katz & Sarnak using data of Odlyzko.)

Montgomery's pair correlation conjecture (1973): As $T \rightarrow \infty$ the empirical distribution depicted above converges to $1 - \left(\frac{\sin(\pi x)}{\pi x} \right)^2$.

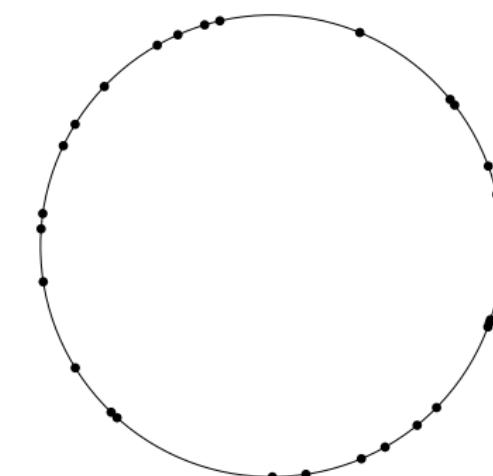
Background: random unitary matrices

Circular Unitary Ensemble (CUE): The group $U(N)$ of $N \times N$ unitary matrices, with Haar probability measure.

What do the eigenvalues of a typical $U \sim \text{CUE}(N)$ look like?



Eigenvalues of a random unitary matrix ($N = 30$).



30 points chosen independently and uniformly on the unit circle.

Normalized gap distribution of CUE eigenangles

Eigenangles: Given $U \in U(N)$, write eigenvalues as $e(\theta_1), \dots, e(\theta_N)$ where $\theta_j \in [0, 1)$ and $e(x) := e^{2\pi i x}$.

What is the expected distribution of the pairwise differences $\theta_j - \theta_k$?

For fixed $0 \leq \alpha \leq \beta \leq N$, consider the random variable

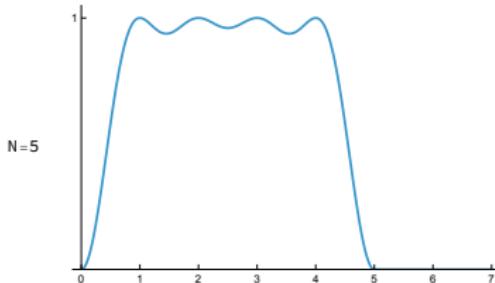
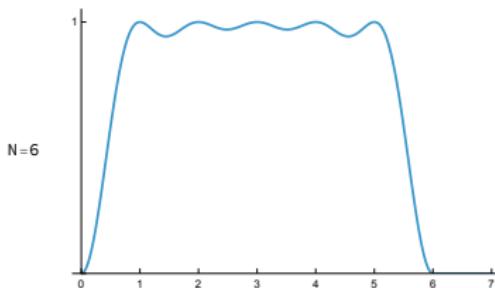
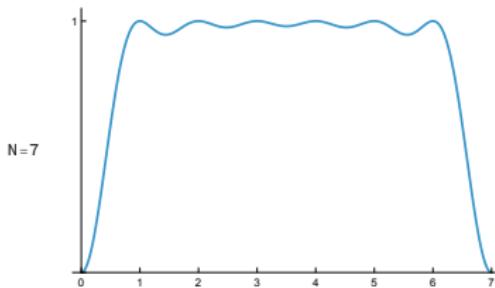
$$\mathcal{N}_{\alpha, \beta} = \#\{(j, k) : 1 \leq j \neq k \leq N \text{ and } \frac{\alpha}{N} \leq (\theta_j - \theta_k \bmod 1) < \frac{\beta}{N}\}.$$

Theorem (Dyson)

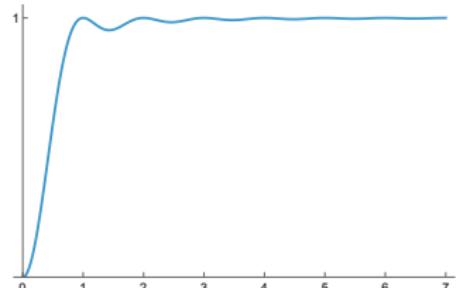
$$\mathbb{E}_{CUE(N)} \frac{1}{N} \mathcal{N}_{\alpha, \beta} = \int_{\alpha}^{\beta} \left(1 - \left(\frac{\sin(\pi x)}{N \sin(\pi x/N)} \right)^2 \right) dx$$

As $N \rightarrow \infty$, the integrand tends to $1 - \left(\frac{\sin(\pi x)}{\pi x} \right)^2$.

This is the same density that appears in Montgomery's conjecture.



$\xrightarrow{N \rightarrow \infty}$

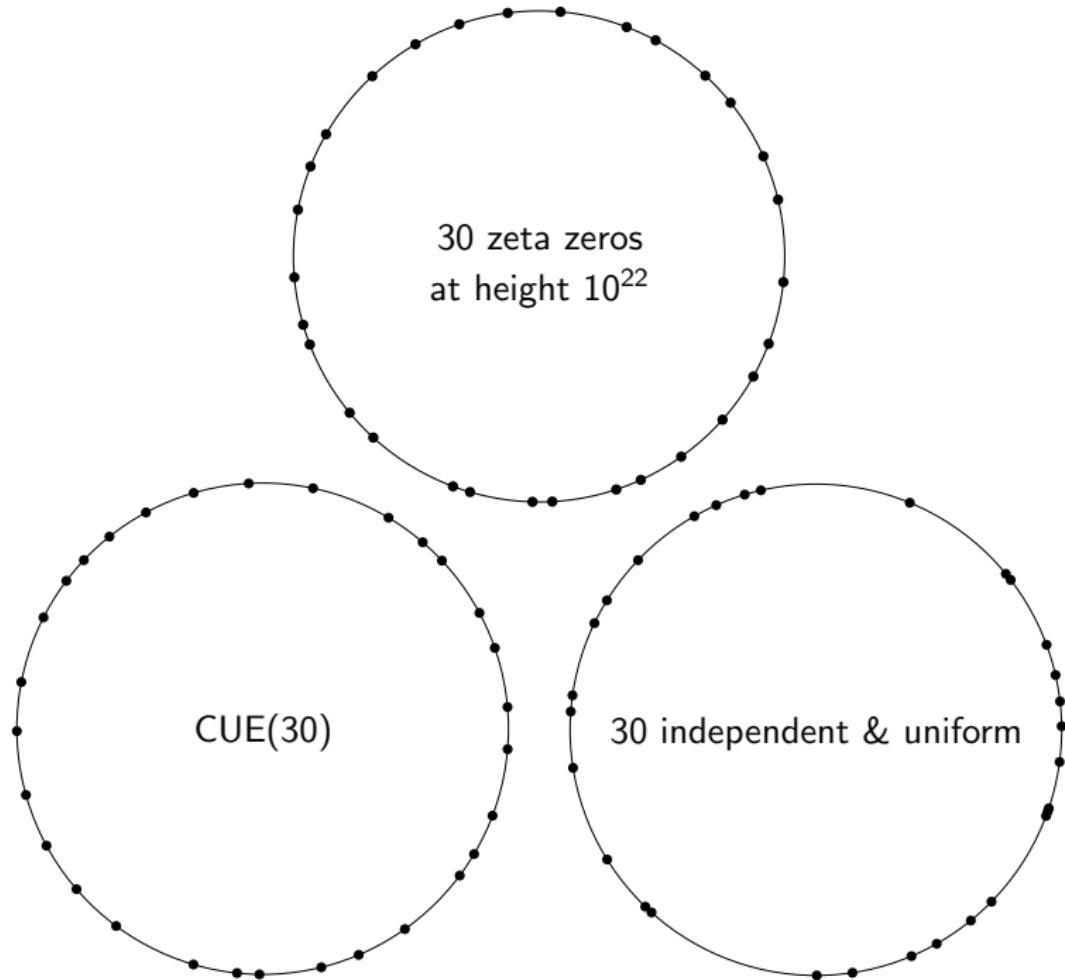


CUE hypothesis (informal)

Let T be large, and let $1 \leq N \ll \log T$. Choose $t \in [T, 2T]$ uniformly at random. Take the first N zeta zeros above height t and wrap them around the unit circle. This N -tuple of points behaves statistically like the eigenvalues of a random $\text{CUE}(N)$ matrix.

This type of model was studied from a statistics perspective by **Diaconis and Coram (2003)**.

Keating and Snaith (2000): used a CUE model to conjecture asymptotics for $\int_T^{2T} |\zeta(\frac{1}{2} + it)|^{2k} dt$.



Higher correlations and the CUE hypothesis

What is known rigorously about correlations of zeta zeros?

- Montgomery (1973): pair correlation of zeta zeros agrees with CUE prediction for test functions whose Fourier transforms are supported in $(-1, 1)$.
- Rudnick and Sarnak (1996): n -point correlations of zeta zeros agree with CUE prediction for test functions whose Fourier transforms are supported in the set $\{(x_1, \dots, x_n) : |x_1| + \dots + |x_n| < 2\}$.

CUE hypothesis

The n -point correlations of the zeta zeros in $[T, 2T]$ agree asymptotically with the n -point correlations of CUE(N) matrix eigenvalues. (In the respective $T \rightarrow \infty$ and $N \rightarrow \infty$ limits.)

Alternative hypotheses for zeta zeros

CUE hypothesis

The n -point correlations of the zeta zeros in $[T, 2T]$ agree asymptotically with the n -point correlations of $\text{CUE}(N)$ matrix eigenvalues. (In the respective $T \rightarrow \infty$ and $N \rightarrow \infty$ limits.)

We can consider the CUE hypothesis to be the **null hypothesis** for the distribution of zeta zeros.

What kinds of **alternative hypotheses** are there that are consistent with the our rigorous knowledge about zeta zeros (i.e. Rudnick-Sarnak)?
Are there models which have...

- no small gaps between consecutive zeros? Yes $\left\{ \begin{array}{l} \text{Tao} \\ \text{Lagarias \& Rodgers} \end{array} \right.$
- no large gaps between consecutive zeros?
- a positive probability of multiple zeros?

Arithmetic significance of small gaps

The question of small gaps is significant because of a connection to Siegel zeros.

Folklore (cf. Watkins 2019): If $L(s, \chi)$ has a “bad” Siegel zero, then the zeros of $\zeta(s)L(s, \chi)$ up to a certain height are all on the critical line and are approximately in an arithmetic progression.

Conrey & Iwaniec (2002): If sufficiently many gaps between consecutive zeta zeros are less than half the average gap, then there are no Siegel zeros.

Finite point process models

Fix a positive integer N .

Let μ be a probability measure on the N -torus: $[0, 1]^N$. Suppose μ is invariant under permuting components of the N -tuple.

Equivalent ways of thinking about μ :

- μ describes a **point process** on $[0, 1] \cong S^1$. That is, it gives a way of picking a random multiset of N points in $[0, 1]$.
- μ describes a conjugation invariant probability measure on $U(N)$. (Conjugacy classes of $U(N)$ correspond to multisets of N points in S^1 . Choose the eigenangles according to μ , then conjugate by $V \sim \text{CUE}(N)$.)

Example: $\text{CUE}(N)$ measure.

Notation: $U \sim \text{CUE}(N)$ and $(\theta_1, \dots, \theta_N) \sim \text{CUE}(N)$.

Example: CUE measure

Theorem (Weyl)

Suppose $(\theta_1, \dots, \theta_N) \sim \text{CUE}(N)$. The joint distribution of $(\theta_1, \dots, \theta_N)$ is given by

$$\frac{1}{N!} \prod_{1 \leq j < k \leq N} |e(\theta_j) - e(\theta_k)|^2 d\theta_1 \cdots d\theta_N.$$

Analogue of Rudnick-Sarnak correlations

Theorem (Diaconis & Shahshahani 2003)

Let $U \sim CUE(N)$. Let a_1, \dots, a_k and b_1, \dots, b_k be nonnegative integers such that $\sum_{j=1}^k j a_j \leq N$. Then

$$\mathbb{E}_{CUE(N)} \prod_j (\operatorname{tr} U^j)^{a_j} (\overline{\operatorname{tr} U^j})^{b_j} = \prod_j j^{a_j} a_j!$$

if $a_j = b_j$ for all j , and zero otherwise.

The restriction $\sum_{j=1}^k j a_j \leq N$ corresponds in a precise way to the Fourier support restriction for test functions in the Rudnick-Sarnak result on n -point correlations of zeta zeros.

Hence, the “alternative models” for the zeta zeros are probability measures that satisfy the Diaconis-Shahshahani result above.

Definition

Given a probability measure μ on $U(N)$ that is conjugation invariant, we'll say that μ *mimics* $\text{CUE}(N)$ if it satisfies the Diaconis-Shahshahani moment conditions (i.e. if one can replace $\text{CUE}(N)$ by μ in the statement of their theorem).

Note: the mimicry condition is equivalent to saying that the Fourier coefficients of the eigenangle measure μ must agree with those of $\text{CUE}(N)$ eigenangle measure in a certain range.

Does there exist a μ that mimics $\text{CUE}(N)$ and has...

- ① no “small gaps” between consecutive eigenangles almost surely?
- ② no “large gaps” between consecutive eigenangles almost surely?
- ③ a positive probability of eigenvalues that have multiplicity ≥ 1 ?

Tao proved that the answer to (1) is yes. I don't know the answer to (2) or (3).

ACUE measure

Definition

Draw $(\theta_1, \dots, \theta_N)$ from the discrete set $\{0, \frac{1}{2N}, \dots, \frac{2N-1}{2N}\}^N$ according to the probability density function

$$\frac{1}{(2N)^N} \frac{1}{N!} \prod_{1 \leq j < k \leq N} |e(\theta_j) - e(\theta_k)|^2.$$

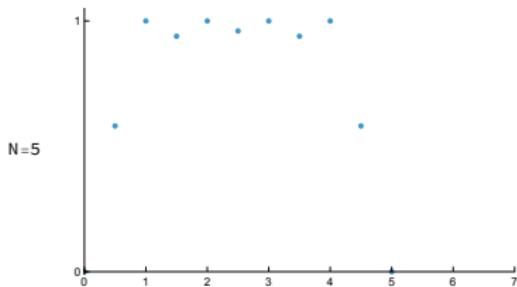
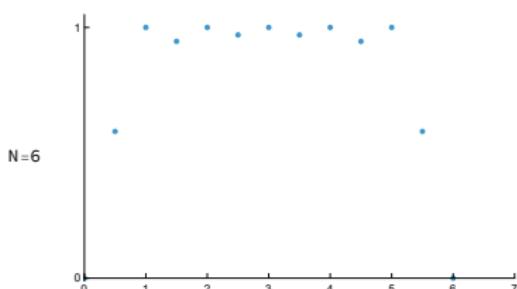
This probability measure on $[0, 1]^N$ is the $\text{ACUE}(N)$ eigenangle measure.

Note: Tao also adds a random universal rotation the angles θ_j . For our results this won't make much difference.

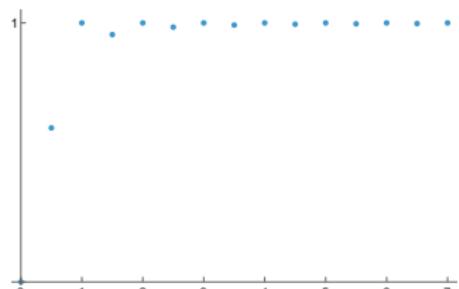
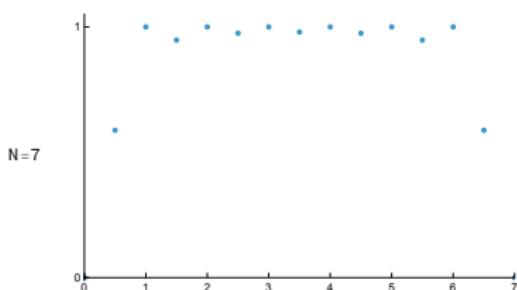
Theorem (Tao 2019)

$\text{ACUE}(N)$ mimics $\text{CUE}(N)$.

All gaps between ACUE eigenangles are a positive half-integer multiple of the mean spacing $\frac{1}{N}$.



$\xrightarrow{N \rightarrow \infty}$



Results on ACUE(N): particle-hole duality

Unlike for CUE(N), the distribution of eigenvalues of ACUE(N) has a certain duality property.

Every ACUE(N) eigenvalue configuration consists of N points out of all the $(2N)$ th roots of unity. Hence, there are also N “holes” (the $(2N)$ th roots of unity that are not eigenvalues).

Theorem (D.)

The distribution of the holes of ACUE(N) is the same as the distribution of the eigenvalues.

Arithmetic significance: the ACUE model for zeta zeros is consistent with the presence of Siegel zeros, which forces the zeros of $\zeta(s)L(s, \chi)$ to lie approximately in an arithmetic progression. The hole distribution corresponds to the distribution of zeros of $L(s, \chi)$.

Particle-hole duality

Proof of theorem:

Given a configuration $\theta_1, \dots, \theta_N$ of ACUE(N) eigenangles, let ψ_1, \dots, ψ_N denote the corresponding “hole” eigenangles. It suffices to show that the ACUE(N) density at $(\theta_1, \dots, \theta_N)$ is the same as the ACUE(N) density at (ψ_1, \dots, ψ_N) . This follows from two facts:

Fact 1: The ACUE(N) density of a configuration depends only on the pairwise differences $\theta_j - \theta_k \pmod{1}$.

Fact 2: The pairwise differences $\theta_j - \theta_k \pmod{1}$ and $\psi_j - \psi_k \pmod{1}$ are the same multisets.

Fact 1 is clear from the definition of ACUE(N). Fact 2 follows from a simple Fourier analytic argument.

Facts about CUE

Theorem (Rains 1997, 2000): Suppose $U \sim \text{CUE}(N)$. Then the following hold:

High powers of U	<p>Let k be an integer such that $k \geq N$. Then the eigenvalues of U^k are distributed as N independent and uniform points on the circle.</p>
Low powers of U	<p>Let k be a divisor of N. Then the eigenvalues of U^k are distributed like the union of the eigenvalues of k independent matrices selected from $\text{CUE}(N/k)$.</p>
High moments of $\text{tr } U$	<p>Let k be a positive integer. Then</p> $\mathbb{E}_{\text{CUE}(N)} \text{tr } U ^{2k} = S_k(12 \cdots (N+1)) $ <p>where $S_k(12 \cdots (N+1))$ denotes the set of permutations of $\{1, \dots, k\}$ that do not contain an increasing subsequence of length $N+1$.</p>

Facts about ACUE

Theorem (D.): Suppose $U \sim \text{ACUE}(N)$. Then the following hold:

High powers of U	For any integer k , let k_0 be the unique integer in $(-N, N]$ such that $k_0 \equiv k \pmod{2N}$. The eigenvalues of U^k have the same distribution as $U^{ k_0 }$.
Low powers of U	Let k be a divisor of N . Then the eigenvalues of U^k are distributed like the union of the eigenvalues of k independent matrices selected from $\text{ACUE}(N/k)$.
High moments of $\text{tr } U$	Let k be a positive integer. Then $\mathbb{E}_{\text{ACUE}(N)} \text{tr } U ^{2k} = S_k(N \cdots 1(N+1), 12 \cdots (N+1)) $ where $S_k(N \cdots 1(N+1), 12 \cdots (N+1))$ denotes the set of permutations of $\{1, \dots, k\}$ that do not contain any subsequence whose relative order is the same as $N \cdots 1(N+1)$ or $12 \cdots (N+1)$.

Proofs of ACUE results

High powers of U : Because the eigenvalues of U are $(2N)$ th roots of unity, we have $U^{2N} = I$. This implies U^k is periodic with period $2N$. There is a further symmetry coming from the fact that $U^k \sim U^{-k}$.

Low powers of U : The proof is Fourier-analytic and is similar to Rains's proof of the CUE case. Suppose μ is a probability measure on $(\frac{1}{2N}\mathbb{Z}/\mathbb{Z})^N$. Given $(\theta_1, \dots, \theta_N) \sim \mu$, we are interested in understanding the distribution of $(k\theta_1, \dots, k\theta_N) \pmod{1}$. There is a nice expression for the Fourier coefficients of this distribution in terms of the Fourier coefficients of μ .

The rest of the analysis involves applying the following expression for the ACUE(N) density:

$$\frac{1}{N!} \prod_{1 \leq j < k \leq N} |e(\theta_j) - e(\theta_k)|^2 = \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) \prod_{j=1}^N e((j - \sigma(j))\theta_j).$$

Proofs of ACUE results (cont.)

High moments of $\text{tr } U$: This proof is more involved...

Rains's proof for the CUE case uses representation theory and combinatorics. His result follows from two key equalities:

$$\textcircled{1} \quad \mathbb{E}_{\text{CUE}(N)} |\text{tr } U|^{2k} = \sum_{\lambda \vdash k, \ell(\lambda) \leq N} (f^\lambda)^2$$

where f^λ is the number of standard Young tableaux of shape λ .

$$\textcircled{2} \quad \sum_{\lambda \vdash k, \ell(\lambda) \leq N} (f^\lambda)^2 = |S_k(12 \cdots (N+1))|$$

where $S_k(12 \cdots (N+1))$ is the set of permutations of $\{1, \dots, k\}$ that do not contain an increasing subsequence of length $N+1$.

The first equality comes from the representation theory of S_k and of $U(N)$. The second equality uses the Robinson-Schensted correspondence.

Proofs of ACUE results (cont.)

High moments of $\text{tr } U$: For ACUE both equalities have analogues, but the proofs are different (both are combinatorial).

$$\textcircled{1} \quad \mathbb{E}_{\text{CUE}(N)} |\text{tr } U|^{2k} = \sum_{\lambda \vdash k, \ell(\lambda) \leq N} (f_{\text{cyl}}^{\lambda})^2$$

where f_{cyl}^{λ} is the number of standard *cylindric* tableaux of shape λ (more specifically, these are cylindric tableaux with period (N, N)).

The proof uses the $\text{ACUE}(N)$ density directly, along with a combinatorial argument involving nonintersecting lattice paths on a cylinder.

Proofs of ACUE results (cont.)

②
$$\sum_{\lambda \vdash k, \ell(\lambda) \leq N} (f_{\text{cyl}}^{\lambda})^2 = |S_k(N \cdots 1(N+1), 12 \cdots (N+1))|$$

where $S_k(N \cdots 1(N+1), 12 \cdots (N+1))$ is the set of permutations of $\{1, \dots, k\}$ that do not contain any subsequence whose relative order is the same as $N \cdots 1(N+1)$ or $12 \cdots (N+1)$.

This proof uses a new variant of the Robinson-Schensted correspondence that is adapted for cylindric tableaux.

Other results

- The same methods can be used to get an expression for $\mathbb{E}_{\text{ACUE}(N)} |\det(I - U)|^{2k}$ except now the combinatorial objects that appear are *semistandard cylindric tableau*.
 - For this result it is necessary to use Tao's definition of ACUE involving an additional random rotation.
- Some partial results on alternative models with no large gaps or with multiple eigenvalues

Connections to differential equations

- The CUE distribution has another interpretation in terms of (circular) Dyson Brownian motion which is defined in terms of a certain stochastic differential equation. Presumably there is a ACUE analogue using random walks rather than Brownian motion?
- Removing the stochastic part of Dyson Brownian motion gives a certain ODE which describes the evolution of zeros of polynomials under heat flow. Is there an ACUE analogue?

Dictionary

Zeta function at random height

$$t \sim \text{Unif}([T, 2T])$$

$$x \mapsto \zeta\left(\frac{1}{2} + it - ix\right)$$

Random CUE matrix

$$U \sim \text{CUE}(N)$$

$$x \mapsto \det(I - Ue(x))$$

Normalize so that average spacing of zeros is 1:

$$x \mapsto \zeta\left(\frac{1}{2} + it - i\frac{2\pi x}{\log T}\right)$$

$$x \mapsto \det(I - Ue\left(\frac{x}{N}\right))$$

Logarithmic derivatives:

$$x \mapsto \frac{2\pi i}{\log T} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{1/2+it}} e\left(\frac{\log n}{\log T} x\right) \quad \Bigg| \quad x \mapsto -\frac{2\pi i}{N} \sum_{j=1}^{\infty} \text{tr}(U^j) e\left(\frac{j}{N} x\right)$$

Collecting terms and equating: $\text{tr}(U^j) \approx -\frac{N}{\log T} \sum_{n \in I_j} \frac{\Lambda(n)}{n^{1/2+it}}$

where $I_j = [T^{\frac{(j-1/2)}{N}}, T^{\frac{(j+1/2)}{N}})$.