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Background: the Riemann zeta function

Riemann zeta function: ζ(s) =
∞∑
n=1

1

ns
for Re(s) > 1.

Analytic continuation: ζ(s) extends to a meromorphic function on C
with a simple pole at s = 1.
Nontrivial zeros: ζ(s) has infinitely many zeros in the critical strip
0 < Re(s) < 1.
Riemann Hypothesis (RH): All nontrivial zeros of ζ(s) lie on the critical
line Re(s) = 1

2 .

Imaginary parts of the first few nontrivial zeros:

14.1347 . . . , 21.0220 . . . , 25.0108 . . . , 30.4249 . . . , 32.9351 . . . , . . .
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Imaginary parts of the zeros

Write the zeros as 1
2 + iγ. (RH ⇐⇒ γ ∈ R.)

Locations of all 0 < γ < 100:

0 20 40 60 80 100

500 < γ < 600:

500 520 540 560 580 600

5000 < γ < 5100:

5000 5020 5040 5060 5080 5100

When γ ≈ T , the mean spacing between consecutive zeros is ∼ 2π
log(T/2π) .

How are the γ’s distributed? Are they independent of one another? No!
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Normalized gap distribution of zeta zeros

Distribution of normalized distances between pairs of 8× 106 zeros near
height T = 1020. (Image by Katz & Sarnak using data of Odlyzko.)
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Compare this with:
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Distribution of distances between pairs of 107 reals chosen independently
and uniformly in [0, 107].
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Distribution of normalized distances between pairs of 8× 106 zeros near
height T = 1020. (Image by Katz & Sarnak using data of Odlyzko.)

Montgomery’s pair correlation conjecture (1973): As T → ∞ the

empirical distribution depicted above converges to 1−
(
sin(πx)

πx

)2
.
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Background: random unitary matrices

Circular Unitary Ensemble (CUE): The group U(N) of N × N unitary
matrices, with Haar probability measure.

What do the eigenvalues of a typical U ∼ CUE(N) look like?

Eigenvalues of a random unitary
matrix (N = 30).

30 points chosen independently
and uniformly on the unit circle.
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Normalized gap distribution of CUE eigenangles

Eigenangles: Given U ∈ U(N), write eigenvalues as e(θ1), . . . , e(θN)
where θj ∈ [0, 1) and e(x) := e2πix .
What is the expected distribution of the pairwise differences θj − θk?

For fixed 0 ≤ α ≤ β ≤ N, consider the random variable

Nα,β = #{(j , k) : 1 ≤ j ̸= k ≤ N and
α

N
≤ (θj − θk mod 1) <

β

N
}.

Theorem (Dyson)

ECUE(N)
1

N
Nα,β =

∫ β

α

(
1−

(
sin(πx)

N sin(πx/N)

)2
)
dx

As N → ∞, the integrand tends to 1−
(
sin(πx)

πx

)2
.

This is the same density that appears in Montgomery’s conjecture.
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N=5

0 1 2 3 4 5 6 7

1

N=6

0 1 2 3 4 5 6 7

1

N=7

0 1 2 3 4 5 6 7

1

−−−−→
N→∞

0 1 2 3 4 5 6 7

1
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CUE hypothesis (informal)

Let T be large, and let 1 ≤ N ≪ logT . Choose t ∈ [T , 2T ] uniformly at
random. Take the first N zeta zeros above height t and wrap them around
the unit circle. This N-tuple of points behaves statistically like the
eigenvalues of a random CUE(N) matrix.

This type of model was studied from a statistics perspective by Diaconis
and Coram (2003).

Keating and Snaith (2000): used a CUE model to conjecture

asymptotics for
∫ 2T
T |ζ(12 + it)|2k dt.
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30 zeta zeros

at height 1022

CUE(30) 30 independent & uniform
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Higher correlations and the CUE hypothesis

What is known rigorously about correlations of zeta zeros?

Montgomery (1973): pair correlation of zeta zeros agrees with CUE
prediction for test functions whose Fourier transforms are supported
in (−1, 1).

Rudnick and Sarnak (1996): n-point correlations of zeta zeros agree
with CUE prediction for test functions whose Fourier transforms are
supported in the set {(x1, . . . , xn) : |x1|+ · · ·+ |xn| < 2}.

CUE hypothesis

The n-point correlations of the zeta zeros in [T , 2T ] agree asymptotically
with the n-point correlations of CUE(N) matrix eigenvalues. (In the
respective T → ∞ and N → ∞ limits.)
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Alternative hypotheses for zeta zeros

CUE hypothesis

The n-point correlations of the zeta zeros in [T , 2T ] agree asymptotically
with the n-point correlations of CUE(N) matrix eigenvalues. (In the
respective T → ∞ and N → ∞ limits.)

We can consider the CUE hypothesis to be the null hypothesis for the
distribution of zeta zeros.

What kinds of alternative hypotheses are there that are consistent with
the our rigorous knowledge about zeta zeros (i.e. Rudnick-Sarnak)?
Are there models which have...

no small gaps between consecutive zeros? Yes

{
Tao
Lagarias & Rodgers

no large gaps between consecutive zeros?

a positive probability of multiple zeros?
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Arithmetic significance of small gaps

The question of small gaps is significant because of a connection to Siegel
zeros.

Folklore (cf. Watkins 2019): If L(s, χ) has a “bad” Siegel zero, then
the zeros of ζ(s)L(s, χ) up to a certain height are all on the critical line
and are approximately in an arithmetic progression.

Conrey & Iwaniec (2002): If sufficiently many gaps between consecutive
zeta zeros are less than half the average gap, then there are no Siegel
zeros.
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Finite point process models

Fix a positive integer N.

Let µ be a probability measure on the N-torus: [0, 1)N . Suppose µ is
invariant under permuting components of the N-tuple.

Equivalent ways of thinking about µ:

µ describes a point process on [0, 1) ∼= S1. That is, it gives a way of
picking a random multiset of N points in [0, 1).

µ describes a conjugation invariant probability measure on U(N).
(Conjugacy classes of U(N) correspond to multisets of N points in
S1. Choose the eigenangles according to µ, then conjugate by
V ∼ CUE(N).)

Example: CUE(N) measure.
Notation: U ∼ CUE(N) and (θ1, . . . , θN) ∼ CUE(N).
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Example: CUE measure

Theorem (Weyl)

Suppose (θ1, . . . , θN) ∼ CUE(N). The joint distribution of (θ1, . . . , θN) is
given by

1

N!

∏
1≤j<k≤N

|e(θj)− e(θk)|2 dθ1 · · · dθN .
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Analogue of Rudnick-Sarnak correlations

Theorem (Diaconis & Shahshahani 2003)

Let U ∼ CUE (N). Let a1, . . . , ak and b1, . . . , bk be nonnegative integers
such that

∑k
j=1 j aj ≤ N. Then

ECUE(N)

∏
j

(trU j)aj (trU j)bj =
∏
j

jajaj !

if aj = bj for all j , and zero otherwise.

The restriction
∑k

j=1 jaj ≤ N corresponds in a precise way to the Fourier
support restriction for test functions in the Rudnick-Sarnak result on
n-point correlations of zeta zeros.

Hence, the “alternative models” for the zeta zeros are probability
measures that satisfy the Diaconis-Shahshahani result above.
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Definition

Given a probability measure µ on U(N) that is conjugation invariant, we’ll
say that µ mimics CUE(N) if it satisfies the Diaconis-Shahshahani
moment conditions (i.e. if one can replace CUE(N) by µ in the statement
of their theorem).

Note: the mimicry condition is equivalent to saying that the Fourier
coefficients of the eigenangle measure µ must agree with those of CUE(N)
eigenangle measure in a certain range.

Does there exists a µ that mimics CUE(N) and has...

1 no “small gaps” between consecutive eigenangles almost surely?

2 no “large gaps” between consecutive eigenangles almost surely?

3 a positive probability of eigenvalues that have multiplicity ≥ 1?

Tao proved that the answer to (1) is yes. I don’t know the answer to (2)
or (3).
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ACUE measure

Definition

Draw (θ1, . . . , θN) from the discrete set {0, 1
2N , . . . ,

2N−1
2N }N according to

the probability density function

1

(2N)N
1

N!

∏
1≤j<k≤N

|e(θj)− e(θk)|2.

This probability measure on [0, 1)N is the ACUE(N) eigenangle measure.

Note: Tao also adds a random universal rotation the angles θj . For our
results this won’t make much difference.

Theorem (Tao 2019)

ACUE(N) mimics CUE(N).

All gaps between ACUE eigenangles are a positive half-integer multiple of
the mean spacing 1

N .
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N=5

0 1 2 3 4 5 6 7
0

1

N=6

0 1 2 3 4 5 6 7
0

1

N=7

0 1 2 3 4 5 6 7
0

1

−−−−→
N→∞

0 1 2 3 4 5 6 7

1
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Results on ACUE(N): particle-hole duality

Unlike for CUE(N), the distribution of eigenvalues of ACUE(N) has a
certain duality property.

Every ACUE(N) eigenvalue configuration consists of N points out of all
the (2N)th roots of unity. Hence, there are also N “holes” (the (2N)th
roots of unity that are not eigenvalues).

Theorem (D.)

The distribution of the holes of ACUE(N) is the same as the distribution
of the eigenvalues.

Arithmetic significance: the ACUE model for zeta zeros is consistent
with the presence of Siegel zeros, which forces the zeros of ζ(s)L(s, χ) to
lie approximately in an arithmetic progression. The hole distribution
corresponds to the distribution of zeros of L(s, χ).
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Particle-hole duality

Proof of theorem:

Given a configuration θ1, . . . , θN of ACUE(N) eigenangles, let ψ1, . . . , ψN

denote the corresponding “hole” eigenangles. It suffices to show that the
ACUE(N) density at (θ1, . . . , θN) is the same as the ACUE(N) density at
(ψ1, . . . , ψN). This follows from two facts:

Fact 1: The ACUE(N) density of a configuration depends only on the
pairwise differences θj − θk (mod 1).
Fact 2: The pairwise differences θj − θk (mod 1) and ψj −ψk (mod 1) are
the same multisets.

Fact 1 is clear from the definition of ACUE(N). Fact 2 follows from a
simple Fourier analytic argument.
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Facts about CUE

Theorem (Rains 1997, 2000): Suppose U ∼ CUE(N). Then the
following hold:

High powers
of U

Let k be an integer such that |k | ≥ N. Then the
eigenvalues of Uk are distributed as N independent and
uniform points on the circle.

Low powers
of U

Let k be a divisor of N. Then the eigenvalues of Uk are
distributed like the union of the eigenvalues of k
independent matrices selected from CUE(N/k).

High
moments
of trU

Let k be a positive integer. Then

ECUE(N) | trU|2k = |Sk(12 · · · (N + 1))|

where Sk(12 · · · (N + 1)) denotes the set of
permutations of {1, . . . , k} that do not contain an
increasing subsequence of length N + 1.

23 / 31



Facts about ACUE

Theorem (D.): Suppose U ∼ ACUE(N). Then the following hold:

High powers
of U

For any integer k , let k0 be the unique integer in
(−N,N] such that k0 ≡ k (mod 2N). The eigenvalues
of Uk have the same distribution as U |k0|.

Low powers
of U

Let k be a divisor of N. Then the eigenvalues of Uk are
distributed like the union of the eigenvalues of k
independent matrices selected from ACUE(N/k).

High
moments
of trU

Let k be a positive integer. Then

EACUE(N) | trU|2k = |Sk(N · · · 1 (N + 1), 12 · · · (N + 1))|

where Sk(N · · · 1 (N + 1), 12 · · · (N + 1)) denotes the
set of permutations of {1, . . . , k} that do not contain
any subsequence whose relative order is the same as
N · · · 1 (N + 1) or 12 · · · (N + 1).
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Proofs of ACUE results

High powers of U: Because the eigenvalues of U are (2N)th roots of
unity, we have U2N = I . This implies Uk is periodic with period 2N.
There is a further symmetry coming from the fact that Uk ∼ U−k .

Low powers of U: The proof is Fourier-analytic and is similar to Rains’s
proof of the CUE case. Suppose µ is a probability measure on ( 1

2NZ/Z)
N .

Given (θ1, . . . , θN) ∼ µ, we are interested in understanding the distribution
of (kθ1, . . . , kθN) (mod 1). There is a nice expression for the Fourier
coefficients of this distribution in terms of the Fourier coefficients of µ.

The rest of the analysis involves applying the following expression for the
ACUE(N) density:

1

N!

∏
1≤j<k≤N

|e(θj)− e(θk)|2 =
∑
σ∈SN

sgn(σ)
N∏
j=1

e((j − σ(j))θj).
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Proofs of ACUE results (cont.)

High moments of trU: This proof is more involved...
Rains’s proof for the CUE case uses representation theory and
combinatorics. His result follows from two key equalities:

1 ECUE(N) | trU|2k =
∑

λ⊢k,ℓ(λ)≤N

(f λ)2

where f λ is the number of standard Young tableaux of shape λ.

2

∑
λ⊢k,ℓ(λ)≤N

(f λ)2 = |Sk(12 · · · (N + 1))|

where Sk(12 · · · (N + 1)) is the set of permutations of {1, . . . , k} that
do not contain an increasing subsequence of length N + 1.

The first equality comes from the representation theory of Sk and of
U(N). The second equality uses the Robinson-Schensted correspondence.
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Proofs of ACUE results (cont.)

High moments of trU: For ACUE both equalities have analogues, but
the proofs are different (both are combinatorial).

1 ECUE(N) | trU|2k =
∑

λ⊢k,ℓ(λ)≤N

(f λcyl)
2

where f λcyl is the number of standard cylindric tableaux of shape λ
(more specifically, these are cylindric tableaux with period (N,N)).

The proof uses the ACUE(N) density directly, along with a combinatorial
argument involving nonintersecting lattice paths on a cylinder.
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Proofs of ACUE results (cont.)

2

∑
λ⊢k,ℓ(λ)≤N

(f λcyl)
2 = |Sk(N · · · 1(N + 1), 12 · · · (N + 1))|

where Sk(N · · · 1(N + 1), 12 · · · (N + 1)) is the set of permutations of
{1, . . . , k} that do not contain any subsequence whose relative order
is the same as N · · · 1(N + 1) or 12 · · · (N + 1).

This proof uses a new variant of the Robinson-Schensted correspondence
that is adapted for cylindric tableaux.
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Other results

The same methods can be used to get an expression for
EACUE(N) | det(I − U)|2k except now the combinatorial objects that
appear are semistandard cylindric tableau.

For this result it is necessary to use Tao’s definition of ACUE involving
an additional random rotation.

Some partial results on alternative models with no large gaps or with
multiple eigenvalues
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Connections to differential equations

The CUE distribution has another interpretation in terms of (circular)
Dyson Brownian motion which is defined in terms of a certain
stochastic differential equation. Presumably there is a ACUE
analogue using random walks rather than Brownian motion?

Removing the stochastic part of Dyson Brownian motion gives a
certain ODE which describes the evolution of zeros of polynomials
under heat flow. Is there an ACUE analogue?
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Dictionary

Zeta function at random height Random CUE matrix

t ∼ Unif([T , 2T ]) U ∼ CUE(N)

x 7→ ζ(12 + it − ix) x 7→ det(I − Ue(x))

Normalize so that average spacing of zeros is 1:

x 7→ ζ(12 + it − i 2πx
logT ) x 7→ det(I − Ue( x

N ))

Logarithmic derivatives:

x 7→ 2πi

logT

∞∑
n=1

Λ(n)

n1/2+it
e(

log n

logT
x) x 7→ −2πi

N

∞∑
j=1

tr(U j)e(
j

N
x)

Collecting terms and equating: tr(U j) ≈ − N

logT

∑
n∈Ij

Λ(n)

n1/2+it

where Ij = [T
(j−1/2)

N ,T
(j+1/2)

N ).
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