THE BURGESS BOUND

ALEX DOBNER

Let x denote a Dirichlet non-principal character modulo ¢, and let S(M, N) denote

the incomplete character sum

M+N

S(M,N) = Z x(n).

n=M+1
It is a classical problem to bound this sum in terms of N and ¢g. By orthogonality of
characters we may reduce to the case N < g. When N is small compared to ¢, these are
called short character sums. A natural goal when bounding these is to beat the trivial
bound S(M,N) < N.

If we assume x behaves “randomly” then probabilistic heuristics suggest that there
should be square-root cancellation in the sum. More precisely, one reasonable conjecture
is

S(M,N) < N2
for any fixed ¢ > 0. For M = 0 this follows from the generalized Lindel6f hypothesis
L(3+it,x) < (q(|t|+2))¢ by a standard application of Perron’s formula. Note that this
bound improves on the trivial bound even when N is just a tiny power of q.

Naturally we would also like to obtain unconditional bounds on these sums. In class’
we discussed the following theorem.

Theorem 1 (Pélya-Vinogradov Inequality). Let x be a non-principal character modulo
q. Then for any integers M, N with N > 0,

S(M,N) < /qloggq.

If one wants a bound that doesn’t depend on N, then the Pélya-Vinogradov inequality
is quite close to the best possible. Indeed, Montgomery and Vaughan have shown on
GRH that

S(M,N) < +/qlogloggq,
and a result of Paley shows that sums of this size are actually attained.

In the rest of this note we’ll discuss a more sophisticated bound on S(M, N) due to
Burgess which depends on the Riemann hypothesis for curves over a finite field. The
Riemann hypothesis is known to hold in this setting, so these results are unconditional.

Theorem 2 (Burgess). Let x be a nonprincipal character modulo an odd prime p, and
let v be a positive integer. We have
r+1

S(M,N) < PN pe (logp)*"

where o, = 1 whenr =1 and o, = % otherwise.

IThese notes were originally written as a final project for a topics course in analytic number theory.
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1. LEMMAS

In order to prove bounds on incomplete character sums (i.e. sums over some subset of
residues modulo ¢) it is helpful to relate them in some way to complete sums (i.e. sums
over every residue class). For example, the standard proof of the Pdlya-Vinogradov
theorem involves expressing the multiplicative character x as a complete sum of additive
characters.

To prove the Burgess bound, the complete sums we’ll use are of the form

> x(f(n))

where f is a polynomial. It turns out that it is possible to prove square-root cancellation
holds for these sums using the Riemann hypothesis over finite fields.

Lemma 1 (Weil). Let x be a character modulo p of order d > 1. Suppose f(x) € F,[X]
is a polynomial which is not of the form c(g(X))¢ for some ¢ € F, and g(X) € F,[X].
Let m be the number of distinct roots of f(X). Then

> x(f(n)
n=1

In order to apply Weil’s bound to the sums S(M, N), we will need to relate S(M, N)
to sums of x evaluated at the polynomial points f(n). Since x is multiplicative, such
polynomials arise naturally by taking moments of short character sums. The following
lemma will suffice for proving the Burgess bound.

< (m —1)p2.

Lemma 2. Let x be a non-principal character modulo p and let r be a positive integer.

Then
2r

< 7 (th n h2’“p%) .

h

Z x(n +m)

m=1

p
n=1

The proof of Lemma 2 is a fairly straightforward application of Lemma 1 (see [1,
Lemma 9.26] for details).

2. PROOF OF THE BURGESS BOUND

2.1. Basic Idea. We now give the main ideas in the proof of the Burgess bound. Note
that the » = 1 case of the Burgess bound is identical to the Pdlya-Vinogradov inequality,
so we’ll assume r > 2.

Recall that S(M, N) is defined to be the sum of the values of y evaluated at each of
elements of [ := {M +1,...,M + N}. We now make the following trivial observation:
if 7 is a family of subsets of I which is a k-fold covering of I (i.e. each element of I is
contained in k of the sets in F), then

1) SO N) =2 30 3 x0)
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Hence, if [S(M, N)| is large then it must be the case that many of the sums > x(j)
are large as well. Conversely, if we want to bound S(M, N) we can instead try to show
bounds on ;. x(j) that hold “on average.”

To give an example of this idea, suppose H is some parameter that’s small relative to
N and let F consist of translates of the set {1,2,..., H}. That is, we we’ll consider the
sets {n+1,...,n+ H} for each n € I. Note that this is family is “approximately” an
H-fold covering of I. It’s not actually an H-fold covering because some of the elements
of I near the endpoints are covered fewer than H times, but it is easy to see that we
still get an approximate version of (1),

M+N H

S(M Z an+k + O(H).

n M+1 k=1

To bound the main term of this expression, we can apply Holder’s inequality to see

M+N H M+N | H 2r\ 2r
@ 5 Y Yxeen|avE (Y [ S
n=M+1 k=1 n=M+1 k=1

(3) < ENTH Z

where the second inequality is trivial because we have extended the incomplete sum
to a complete sum. From this last expression it’s now clear what the purpose of these
manipulations was: we can apply Lemma 2 to this expression to get a bound on S(M, N)!
Sadly it turns out that this method doesn’t actually give better bounds than what we
already know. That is, there is no choice of H and r where the resulting bound is better
than what one gets from either the trivial bound or Pélya-Vinogradov. In order to derive
the Burgess bound, one needs to be more careful.

2.2. Improving the method. The problem with the method above is that the in-
equality where we went from the incomplete sum to the complete sum is too inefficient.
On the right-hand side of (2) we have the 2rth moment over N different translates of
{1,2,..., H} whereas in (3) we have the 2rth moment over all p different translates.
Burgess’s key insight was to choose a larger family F. The family he considered consists
of all arithmetic progressions

{n+d,n+2d,...,n+ Hd} foralld € {1,...,D} and n € I.

Here D is another parameter which we think of as being small relative to N (we will
require D < p).

Similarly to the previous family, this new family is an approximate D H-fold covering
of I. To state this rigorously, we let

M(y) = mae [S(M, N)|.
N<y
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Then one can check that

(4) S(M, N) = % S° X+ kd) + 20M(DH)

nel
de{1,...,D}
ke{1,....H}

for some |0 < 1. (Note that when D = 1, we are precisely in the special case of the
method described previously.)

Since y is multiplicative, each of the sums over the arithmetic progressions can be
related to an incomplete character sum S(m, H) for some m. Indeed, given some choice
of n and d, we may write n = dm (mod p) for some unique 1 < m < p, and we see that

Letting v(m) denote the number of pairs n,d with n € I and d € {1, ..., D} such that
n = dm (mod p), we see that

p H
() Yoxntkd| =3 > x(d)Y x(m+k)

n,d,k m=1 n,d k=1
n=dm (p)
P H
(6) < > w(m) [ x(m+k)
m=1 k=1

Now let’s consider why this may give an improvement over the previous method.
Suppose for a moment that for any m there is at most one pair (n,d) associated to it.
This would mean that v(m) = 1 for ND different values of m, and v(m) = 0 elsewhere.
Consequently, the sum in (6) is an incomplete sum just like the sums in (2) were, but
the collection of residue classes we are summing over this time is less sparse (we are
summing over N D residue classes rather than N of them). Hence, the step where we
bound the incomplete sum by a complete sum will be more efficient in this case.

To carry out this method, there are some hurdles to overcome. For example, there
may be “collisions” where different pairs (n,d) and (n’,d’) correspond to the same value
of m. Also, we still need to worry about how to handle the error term in (4). To make
sure there aren’t many collisions, it’s necessary to choose the parameter D such that
ND < p. To handle the error term in (4), the solution is to use induction on N: if we
ensure that (say) DH < N/10, then M(DH) < M(N/10) which we then bound using
the induction hypothesis.

Applying (6) and Hoélder’s inequality to bound (4) we see that

1
2r 2r

H
ZX n+ k)

k=1

|S(M, N)!<7||v! 2 (D

n=1

+2M(DH)
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1
where we have used the notation ||v||s to mean (>.F _, v(m)%)s.
then gives

Applying Lemma 2

1
(7) SO, V)| < SlJoll 2= Cr (H=3p% +p3 ) +2M(DH)

for some absolute constant C' > 0. )
If there were no “collisions” at all, then we’d have that ||v|| _2» = (ND)'"2r. Inserting
2r—1

this this into (7) one can check that the optimal choice (subject to our constraints) of
D and H is

8) H=|p*|, D= er—ziJ .

Inserting these into (7) and doing the induction on N that we mentioned above would
then give the Burgess bound without out any logarithmic loss.
In reality of course there will be some collisions. Consequently the size of ||v|| 2 will
2r—1

be a bit larger than the idealized scenario. To get a bound, we’ll interpolate between
bounds on ||v||; and ||v||2. From the definition of v(m) we know that

p

llolli = ) v(m) = DN,

m=1

so our goal is to get a bound on ||v||3 that isn’t much worse than this. The following
lemma shows that we can get a bound that only loses a log p.

Lemma 3. Suppose DN < p/2 and 1 < D < N. Then ||v||3 < DN logp.

Proof. Note that by the definition of v(m), the sum Y_F _, v(m)? counts the number
of choices of n,n’,d,d',m such that n,n’ € {1,...,N}, and d,d’ € {1,...,D}, and
M +n =dm (mod p), M +n' = d'm (mod p). Eliminating m, these congruences are
equivalent to the condition

(d—d)YM =dn—dn (mod p).

Given any pair d,d’ we will derive an upper bound on the number of choices of n,n’
that can satisfy the condition above. Let k be the unique integer such that |k| < p/2
and (d —d')M = k (mod p). Note that by the assumption DN < p/2, any solution to
the congruence d'n — dn’ = k (mod p) must in fact be an equality d'n — dn’ = k. If

no, ng, are a fixed pair of solutions, elementary number theory tells us that solutions to
d d

this equation are given by n = ng + Wh, n =ngy+ ﬁh. By the restriction on the
range of n,n’ the solutions we care about must satisfy |h| < %. This means the

2N (d,d")

total number of choices of n,n’ is at most 1 + max[d AT
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Summing now over all choices of d, d’ we get

pv(m)2<< > <1+2N(dcf’d/))

m=1 1<d<d’<D
1
2
<piny Yl
I<D 1<e<e’<D/1
<« D? + DN log2D.
which gives the result. O

To see that our choice of D in (8) satisfies the constraints of the lemma, note that

DN < 1—10N 2p_%. One can verify that this quantity is less than p/2 for any values of
N and p that we are interested in (i.e. values which are not already covered by the
Pélya-Vinogradov inequality).

Hence, from Hdélder’s inequality deduce that

1-1 L _1 Ee
o]l 2= < llolly "Ilvll5 < (DN)'~2 (logp)>r.
Inserting this into (7) with our choice of parameters (8) we get
IS(M, N)| < C'rN'"Fp2 (logp) 3 + 2M(N/10).

Performing the induction on N (and using the trivial bound as soon as N < pl/At1/ (4”)
gives the Burgess bound.
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