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Given τ ∈ Sk, a permutation σ ∈ Sn avoids τ if there is no subsequence of σ whose
elements are in the same relative order as τ . (Here we think of both τ and σ as ordered
lists of numbers.) For example, if τ = 213 then σ avoids τ if there is no 1 ≤ a < b < c ≤ n
such that σ(b) < σ(a) < σ(c). In this context τ is often referred to as a pattern. Pattern
avoidance can be defined in terms of permutation matrices. Saying that σ avoids τ is
equivalent to saying that the permutation matrix of σ does not contain the permutation
matrix of τ as a submatrix.

Given a collection of patterns Π = {τ1, . . . , τm}, we define

Sn(Π) := {σ ∈ Sn : σ avoids τ for all τ ∈ Π}.
We call this the set of Π-avoiding patterns of length n. If Π is a singleton set {τ} then
we just write Sn(τ) to denote this set.

A central goal in the study of pattern avoiding permutations is to understand the size
of |Sn(Π)| for a given Π and n. Certain patterns are well understood. For example, for
τ = 231, Knuth showed |Sn(τ)| = Cn, the nth Catalan number. In fact, it turns out
that |Sn(τ)| = Cn for all τ ∈ S3. This suggests the following question: for which sets of
patterns Π1 and Π2 is it the case that |Sn(Π1)| = |Sn(Π2)| for all n ∈ N? If Π1 and Π2

have this property, then they are said to be Wilf-equivalent. This is written as Π1 ∼ Π2.
For singleton sets of patterns {τ} and {τ ′} we write τ ∼ τ ′.

Finding a general classification of pattern sets up to Wilf-equivalence is a difficult
problem. However, there are many known examples of Wilf-equivalence. The simplest
of these are the “trivial” Wilf-equivalences that come from symmetry. These symmetries
are best understood using permutation matrices. There is a natural action of D4 (the
symmetries of the square) on permutation matrices/patterns which preserves the notion
of pattern avoidance. Consequently, for any pattern set Π we can apply these symmetries
to get up to 7 other pattern sets that are Wilf-equivalent to Π.

Other Wilf-equivalences are more difficult to come by. Restricting to the case of
singleton sets, the list of all known Wilf-equivalences are as follows:

(1) (Stankova 1994 [4]) 1342 ∼ 2413.
(2) (Stankova & West 2002 [3]) 231⊕ τ ∼ 312⊕ τ for any permutation τ . (Here ⊕

refers to the direct sum of permutations. The quickest definition is as follows:
ρ⊕π is the permutation you get from taking the permutation matrices of ρ and
π and putting them together into a block diagonal permutation matrix.)

(3) (Backelin, West, & Xin 2007 [1]) 12 · · · k ⊕ τ and k · · · 21⊕ τ for any k ∈ N and
any permutation τ .

Note that (2) and (3) are infinite families of Wilf-equivalences, whereas (1) is a “spo-
radic” example which does not fall into either of the infinite families. Naturally we can
ask whether these form a complete list.

Question 1. Are there other Wilf-equivalences for singleton pattern sets aside from
those that are generated by the trivial equivalences and (1), (2), and (3)?
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I am not sure whether anyone has conjectured an answer to this question, but it is
natural to look for computational evidence one way or the other. To do this, we can try
to search for all Wilf-equivalences among patterns of length k for small values of k.1

The problem of searching for all Wilf-equivalences is essentially the same thing as clas-
sifying singleton pattern sets up to Wilf-equivalence. For any fixed k, a straightforward
algorithm for carrying out this classification is as follows.

(1) Generate the list of all k! permutations in Sk. Apply the knownWilf-equivalences
to reduce this to a list of candidate equivalence classes. Our goal is to determine
whether these candidate equivalence classes are indeed distinct.

(2) Select a representative from each candidate equivalence class. For each repre-
sentative τ , compute |Sn(τ)| for n = 1, 2, . . . , N up to some threshold N .

(3) If the sequences computed in Step 2 are all distinct, then the classification is
complete. If there are some duplicate sequences, then compute an additional
term for each of the relevant sequences (i.e. increment N and repeat Step 2,
but only do the computation for the duplicated sequences). Repeat this process
until there are are no longer any duplicate sequences.

If this procedure terminates then this gives a complete classification of patterns of
length k. If it does not terminate, then there must be new Wilf-equivalence which is
not covered by any of the known cases.

In practice, carrying out the algorithm above is quite computationally intensive. For
k ≤ 7, this was completed by Stankova and West [3, Fig. 9]. In their paper they do
not say how long the computation took, but I imagine that for computers in the early
2000s it would be quite a long time. Going up to k = 8 was presumably computationally
infeasible.

Nowadays computers are several orders of magnitude more powerful, so I was able to
carry out the k = 8 calculation in less than a day on a laptop. I also had the advantage
of being able to use some very efficient code for calculating |Sn(τ)| which was written
by William Kuszmaul [2]. This search did not yield any new Wilf-equivalences. That
is, all the sequences for the various candidate equivalence classes (of which there were
4755) ended up being distinct. This means we now have the following table (where the
last column is new).

Pattern length k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Wilf classes 1 1 1 3 16 91 595 4755

To get a sense of how long the steps took, here is a summary.

• Initially I computed |Sn(τ)| for all 4755 patterns for n ≤ 12. The computation
for these took about 1.6 seconds per pattern.

• After this there were 1055 patterns whose sequences were not unique. For each
of these I ran the computation for n = 13. These took about 21 seconds per
pattern.

• After the n = 13 computation there were 8 remaining patterns whose sequences
were not unique. Computing n = 14 for each of these took about 5 minutes per
pattern. In the end they were all unique.

I will post the resulting data along with this note. For k = 9 there are 42,681
candidate Wilf-equivalence classes. Completing the classification procedure for these
is well within the realm of possibility for modern computers (especially given that the

1Note: it’s not hard to see that if τ and τ ′ have have different lengths then we cannot have τ ∼ τ ′.
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problem is highly parallelizable). For k = 10 one is probably better off looking for a
different approach.
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