

KEEPING TRACK OF LEFT AND RIGHT ACTIONS

ALEX DOBNER

1. INTRODUCTION

1.1. Definitions. The goal of this note is to record a useful mnemonic for remembering how group actions on sets lift to group actions on functions. This is described in Section 2. First we establish the definitions.

Let G be a group. A *left action* of G on a set X is a map $\cdot : G \times X \rightarrow X$ satisfying the conditions

- (1) $e \cdot x = x$ for all $x \in X$
- (2) $g \cdot (h \cdot x) = (gh) \cdot x$ for all $g, h \in G, x \in X$.

Similarly, we also have the notion of a *right action* of G on X . This is a map $\cdot : X \times G \rightarrow X$ satisfying the conditions

- (1) $x \cdot e = x$ for all $x \in X$
- (2) $(x \cdot g) \cdot h = x \cdot (gh)$ for all $g, h \in G, x \in X$.

We call X a left G -set or a right G -set depending on the type of action.

1.2. Categorical perspective on group actions. Note that the definition of a left group action looks a lot like the definition of function composition if we imagine g and h are functions). To clarify what's going on, it's helpful to state things in the language of category theory.

Any group G can be thought of a category $*_G$ with a single object and with morphisms that are exactly the elements of G . The morphism composition operation is defined to equal the group operation.¹ From this perspective a left group action is exactly the same thing as a functor $F : *_G \rightarrow \mathbf{Set}$. The G -set corresponding to F is just the single object in \mathbf{Set} that's in the image of F . The fact that F is a functor means that it turns morphism composition in $*_G$ (i.e. the group operation) into morphism composition in \mathbf{Set} (i.e. function composition).²

The reason that a functor $F : *_G \rightarrow \mathbf{Set}$ corresponds to a *left* action (as opposed to a right action) is because of how we define composition of functions in standard mathematical notation (or equivalently, because of how we define composition of morphisms in \mathbf{Set}). Indeed, given two functions g, h their composition $g \circ h$ is given by the rule $(g \circ h)(x) = g(h(x))$. This is exactly the same as rule (2) for left actions.

At first glance, it is slightly strange that $g \circ h$ is defined to mean “apply h first, then g ”, but the reason for this is precisely because we write functions to the left of their arguments. Indeed, if we were to write the expression $g h x$ without any parentheses, then there is still no ambiguity about the meaning of the expression: apply h to x , then g . On the other hand, if we lived in a world where mathematicians wrote function application on the right-hand side (i.e. $x g h$) then naturally we'd define $g \circ h$ to mean “apply g first, then h ”. In this alternate world, a functor $F : *_G \rightarrow \mathbf{Set}$ would then correspond to a right action.

To go from the usual definition of function composition to the alternative definition, what we are essentially doing is passing from \mathbf{Set} to the opposite category \mathbf{Set}^{op} . Hence, we can say that a right action is just a functor $F : *_G \rightarrow \mathbf{Set}^{\text{op}}$. Alternatively, a right action is a *contravariant* functor from $*_G$ to \mathbf{Set} . That is, F satisfies $F(gh) = F(h) \circ F(g)$ for all morphisms in $*_G$.

¹Note that the fact that G has inverses is not really relevant here. A category with a single object is equivalent to notion of a monoid. Amusingly, the suffix ‘-oid’ is used in category theory when one wants to allow for multiple objects, so one can define a category to be a monoidoid.

²A *group representation* is a variant of this idea where the functor goes to a category of vector spaces. Once again, we could generalize this idea to monoid representations. Note that associativity is completely essential for making sense of these notions.

1.3. Going between left and right actions. For any group G , there is an isomorphism of categories between $*_G$ and the opposite category $*_G^{op}$. This is given by the mapping $g \mapsto g^{-1}$. Note that this is not the same as the trivial fact that *any* category is *anti*-isomorphic to its opposite category (via the “contravariant identity” functor).

This isomorphism allows one to convert any covariant functor $F: *_G \rightarrow \mathbf{Set}$ to a contravariant functor from $*_G$ to \mathbf{Set} and vice versa. In other words: there is a natural bijective correspondence between left G actions and right G actions.

Concretely, given a left action $(g, x) \mapsto g \cdot x$, we define the right action by letting $x \cdot g := g^{-1} \cdot x$. Note that this correspondence relies on the fact that groups have inverses. We do not have such a bijective correspondence for general noncommutative monoids even though the definition of left and right actions make sense for these objects.

2. LIFTING ACTIONS ON SETS TO ACTIONS ON FUNCTIONS

Suppose X and Y are sets. If either one of them is a left or right G -set, then there is a natural way to make $\text{Hom}(X, Y)$ into a G -set. See the following table for how this goes. (We'll use g to denote a group element and $\Psi: X \rightarrow Y$ to denote a function.)

Type of action:	Lifts to ... on $\text{Hom}(X, Y)$	Via the definition...
left action on Y	a left action	$(g \cdot \Psi)(x) := g \cdot (\Psi(x))$
left action on X	a right action	$(\Psi \cdot g)(x) := \Psi(g \cdot x)$
right action on Y	a right action	$(\Psi \cdot g)(x) := \Psi(x) \cdot g$
right action on X	a left action	$(g \cdot \Psi)(x) := \Psi(x \cdot g)$

The first line corresponds to composing the covariant functor $*_G \rightarrow \mathbf{Set}$ (i.e. the left action on Y) with the covariant functor $\text{Hom}(X, -): \mathbf{Set} \rightarrow \mathbf{Set}$. The second line corresponds to composing the covariant functor $*_G \rightarrow \mathbf{Set}$ (the left action on X) with the contravariant functor $\text{Hom}(-, Y): \mathbf{Set} \rightarrow \mathbf{Set}$. Etc.

It is annoying to remember the rows of this table, but it turns out that there is a nice mnemonic. Looking at the first two rows in the table, note that the definition in the last column is simply a rearrangement of parentheses. Checking that these rows actually give valid left/right actions also amounts to rearranging parentheses. For example, for the second row we have

$$((\Psi \cdot g) \cdot h)(x) = (\Psi \cdot g)(h \cdot x) = \Psi(g \cdot (h \cdot x)) = \Psi((gh) \cdot x) = (\Psi \cdot (gh))(x).$$

Hence, to remember the second row of the table, we simply look at the expression $\Psi g x$ and we equate both ways of parenthesizing it. Similarly, to remember the first row, we do the same things with $g \Psi x$.

What about the other two rows of the table? For the third row we look at $x \Psi g$, and we take parentheses in two ways again and equate them. This time we interpret $(x \Psi)$ to mean “apply Ψ to x ”. Under this interpretation, verifying that we have a valid right action is once again a matter of moving parentheses around. Lastly, for the fourth row we do the same thing for $x g \Psi$.

Hence, we see that each of the four rows in the table comes from a different permutation of the three symbols x , g , and Ψ . What about the last two permutations? These are $g x \Psi$ and $\Psi x g$. Note that g is not adjacent to Ψ in either of these, so there is no way that equating the two ways of parenthesizing will define an action on $\text{Hom}(X, Y)$. The resulting equations are still meaningful though. The statement $(g \cdot x) \Psi = g \cdot (x \Psi)$ is equivalent to saying that Ψ is an *equivariant map* from the left G -set X to the left G -set Y . Similarly, $(\Psi x) \cdot g = \Psi(x \cdot g)$ says that Ψ is an equivariant map between right G -sets.

2.1. Actions involving g^{-1} . Note that the expression g^{-1} does not appear anywhere in the table above. Consequently, everything above generalizes nicely to monoid actions as well. For completeness, we will now state some additional liftings that work when G is a group (in which case we can apply the correspondence described in Section 1.3). The resulting table is as follows.

Type of action:	Lifts to ... on $\text{Hom}(X, Y)$	Via the definition...
left action on Y	a right action	$(\Psi \cdot g)(x) := g^{-1} \cdot (\Psi(x))$
left action on X	a left action	$(g \cdot \Psi)(x) := \Psi(g^{-1} \cdot x)$
right action on Y	a left action	$(g \cdot \Psi)(x) := \Psi(x) \cdot g^{-1}$
right action on X	a right action	$(\Psi \cdot g)(x) := \Psi(x \cdot g^{-1})$

Example: Let G be a compact group, and let $L^2(G)$ be the Hilbert space of square integrable functions (with respect to Haar measure on G). The left action of G on itself lifts to a left action of G on $L^2(G)$ using the second row of the second table. This is called the *left regular representation*. The right action of G on itself lifts to a left action of G on $L^2(G)$ using the fourth row of the first table. This is called the *right regular representation*.³

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, 530 CHURCH ST, ANN ARBOR, MI 48109
Email address: `adobner@umich.edu`

³Note that as actions on $L^2(G)$, the left and right regular representations are both left actions. This is standard in representation theory (i.e. a group representation is a left action).