KEEPING TRACK OF LEFT AND RIGHT ACTIONS

ALEX DOBNER

1. INTRODUCTION

1.1. Definitions. The goal of this note is to record a useful mnemonic for remembering how
group actions on sets lift to group actions on functions. This is described in Section 2. First
we establish the definitions.

Let G be a group. A left action of G on a set X is a map -: G x X — X satisfying the
conditions

(1) ecx=xforall z € X

(2) g-(h-x)=(gh)-zforall ghe G,zeX.
Similarly, we also have the notion of a right action of G on X. Thisisamap -: X xG - X
satisfying the conditions

(1) z-e=xforall z € X
(2) (x-g)-h==x-(gh) forall gh € G,x € X.
We call X a left G-set or a right G-set depending on the type of action.

1.2. Categorical perspective on group actions. Note that the definition of a left group
action looks a lot like the definition of function composition if we imagine g and h are functions).
To clarify what’s going on, it’s helpful to state things in the language of category theory.

Any group G can be thought of a category *g with a single object and with morphisms
that are exactly the elements of G. The morphism composition operation is defined to equal
the group operation.! From this perspective a left group action is exactly the same thing as a
functor F': xg — Set. The G-set corresponding to F' is just the single object in Set that’s in
the image of F'. The fact that F' is a functor means that it turns morphism composition in *g
(i.e. the group operation) into morphism composition in Set (i.e. function composition).?

The reason that a functor F': xg — Set corresponds to a left action (as opposed to a right
action) is because of how we define composition of functions in standard mathematical notation
(or equivalently, because of how we define composition of morphisms in Set). Indeed, given two
functions g, h their composition g o h is given by the rule (g o h)(z) = g(h(x)). This is exactly
the same as rule (2) for left actions.

At first glance, it is slightly strange that g o h is defined to mean “apply h first, then ¢”,
but the reason for this is precisely because we write functions to the left of their arguments.
Indeed, if we were to write the expression g h x without any parentheses, then there is still no
ambiguity about the meaning of the expression: apply h to x, then g). On the other hand, if we
lived in a world where mathematicians wrote function application on the right-hand side (i.e.
x g h) then naturally we’d define g o h to mean “apply g first, then h”. In this alternate world,
a functor F': g — Set would then correspond to a right action.

To go from the usual definition of function composition to the alternative definition, what we
are essentially doing is passing from Set to the opposite category Set°?. Hence, we can say that
a right action is just a functor F' : xg — Set°P. Alternatively, a right action is a contravariant
functor from *¢ to Set. That is, F' satisfies F'(gh) = F'(h) o F(g) for all morphisms in *¢.

INote that the fact that G has inverses is not really relevant here. A category with a single object is equivalent
to notion of a monoid. Amusingly, the suffix ‘-0id’ is used in category theory when one wants to allow for multiple
objects, so one can define a category to be a monoidoid.

2A group representation is a variant of this idea where the functor goes to a category of vector spaces. Once
again, we could generalize this idea to monoid representations. Note that associativity is completely essential for
making sense of these notions.

1

2 ALEX DOBNER

1.3. Going between left and right actions. For any group G, there is an isomorphism of
categories between x5 and the opposite category *G This is given by the mapping g — ¢~ L.
Note that this is not the same as the trivial fact that any category is anti-isomorphic to its
opposite category (via the “contravariant identity” functor).

This isomorphism allows one to convert any covariant functor F': *g — Set to a contravariant
functor from *¢ to Set and vice versa. In other words: there is a natural bijective correspon-
dence between left G actions and right G actions.

Concretely, given a left action (g, z) — g-x, we define the right action by letting z-g = ¢! - .
Note that this correspondence relies on the fact that groups have inverses. We do not have such
a bijective correspondence for general noncommutative monoids even though the definition of
left and right actions make sense for these objects.

2. LIFTING ACTIONS ON SETS TO ACTIONS ON FUNCTIONS

Suppose X and Y are sets. If either one of them is is a left or right G-set, then there is a
natural way to make Hom(X,Y') into a G-set. See the following table for how this goes. (We’ll
use g to denote a group element and ¥: X — Y to denote a function.)

Type of action: | Lifts to ... on Hom(X,Y) | Via the definition...
left action on Y a left action (g-9)(x) =g (¥(x))
left action on X a right action (U-g)(x) =¥(g-x)
right action on Y a right action (U-g)(x) =¥(x)-g
right action on X a left action (g-9)(x) =¥(x-g)

The first line corresponds to composing the covariant functor xg — Set (i.e. the left action
on Y) with the covariant functor Hom(X, —): Set — Set. The second line corresponds to
composing the covariant functor g — Set (the left action on X') with the contravariant functor
Hom(—,Y): Set — Set. Etc.

It is annoying to remember the rows of this table, but it turns out that there is a nice
mnemonic. Looking at the first two rows in the table, note that the definition in the last
column is simply a rearrangement of parentheses. Checking that these rows actually give valid
left /right actions also amounts to rearranging parentheses. For example, for the second row we
have

(W-g)-h)(x) = (¥ -g)(h-z)=U(g- (h-z)) =¥((gh) z) = (¥ (gh))(x).

Hence, to remember the second row of the table, we simply look at the expression ¥ g x and
we equate both ways of parenthesizing it. Similarly, to remember the first row, we do the same
things with g ¥ .

What about the other two rows of the table? For the third row we look at z ¥ g, and we
take parentheses in two ways again and equate them. This time we interpret (z ¥) to mean
“apply ¥ to 7. Under this interpretation, verifying that we have a valid right action is once
again a matter of moving parentheses around. Lastly, for the fourth row we do the same thing
for x g .

Hence, we see that each of the four rows in the table comes from a different permutation of
the three symbols z, g, and ¥. What about the last two permutations? These are g x ¥ and
¥ x g. Note that g is not adjacent to W in either of these, so there is no way that equating the
two ways of parenthesizing will define an action on Hom(X,Y). The resulting equations are
still meaningful though. The statement (g-z) ¥ = g- (z V) is equivalent to saying that ¥ is an
equivariant map from the left G-set X to the left G-set Y. Similarly, (¥ z)-g =V (x - g) says
that ¥ is an equivariant map between right G-sets.

2.1. Actions involving ¢~ !. Note that the expression ¢g~! does not appear anywhere in the
table above. Consequently, everything above generalizes nicely to monoid actions as well. For
completeness, we will now state some additional liftings that work when G is a group (in which
case we can apply the correspondence described in Section 1.3). The resulting table is as follows.

KEEPING TRACK OF LEFT AND RIGHT ACTIONS

Type of action:

Lifts to ...

on Hom(X,Y)

Via the deﬁnition

left action on Y
left action on X

right action on Y
right action on X

a right action
a left action
a left action

a right action

(V- g)(x) =
(g-V)(x) = (g
(9- V) (x) = V()
(V- g)(z) = V(z - g

-(()

j
o
Y

Example: Let G be a compact group, and let L?(G) be the Hilbert space of square integrable
functions (with respect to Haar measure on G).
action of G on L?(G) using the second row of the second table. This is called the left regular
representation. The right action of G on itself lifts to a left action of G' on L?(G) using the
fourth row of the first table. This is called the right reqular representation.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, 530 CHURCH ST, ANN ARBOR, MI 48109

Email address: adobner@umich.edu

3Note that as actions on L?(@), the left and right regular representations are both left actions. This is standard
in representation theory (i.e. a group representation is a left action).

3

The left action of G on itself lifts to a left

