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1. Introduction

Suppose f : R → C is some relatively nice function and we want to compute or estimate the
sum ∑

n∈Z
f(n).

Two methods for this that get used frequently in analytic number theory are

(1) the Poisson summation formula, and
(2) the Euler-Maclaurin formula.

In this note, I’d like to record how to relate these two.

1.1. Notation. Let e(x) := e2πix. Then the Fourier transform of f is

f̂(u) :=

∫
R
f(x)e(−xu) dx.

For a periodic function F : R → C with period 1, the Fourier transform is a function F̂ : Z → C
where

F̂ (n) =

∫
[0,1)

f(x)e(−nx) dx.

2. The summation formulas

First let’s state each formula and sketch the proofs. Both are usually stated in a more general
way, but the generalized versions make it more difficult to see the connection between the two.
To avoid any technicalities in the proofs, let’s assume that f is a Schwartz function.

Theorem 1 (Poisson summation formula).∑
n∈Z

f(n) =
∑
m∈Z

f̂(m) =

∫
R
f(x) dx+

∑
m ̸=0

∫
R
f(x)e(−mx) dx.

Proof. Define the periodized function F (x) =
∑

n∈Z f(x + n). Then the sum we’re interested

in is F (0). It’s easy to verify that F̂ (n) = f̂(n) for every n ∈ Z. Hence, by Fourier inversion,

F (0) =
∑

n∈Z F̂ (n) =
∑

n∈Z f̂(n). □

Theorem 2 (Euler-Maclaurin formula).∑
n∈Z

f(n) =

∫
R
f(x) dx−

∫
R
f ′(x)s(x) dx

where s(x) = 1/2− x+ ⌊x⌋. (This function s(x) is sometimes called the “sawtooth” function.)

Proof. Using Riemann-Stieltjes integration and integration by parts we have∑
n∈Z

f(n) =

∫ ∞

−∞
f(x) d⌊x⌋

=

∫
R
f(x) dx+

∫ ∞

−∞
f(x) ds(x)

=

∫
R
f(x) dx−

∫
R
f ′(u)s(x) dx.
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□

Remark 1. In the general Euler-Maclaurin formula one integrates by parts k times rather than
just once. Doing this gives∑

n∈Z
f(n) =

∫
R
f(x) dx+ (−1)k

∫
R
f (k)(u)sk(x) dx

where sk is a certain periodized degree k polynomial. These polynomials are called the Bernoulli
polynomials.1

Remark 2. Usually the Euler-Maclaurin formula is stated (and applied) for sums over a
bounded range, in which case there are boundary terms coming from the application of integra-
tion/summation by parts. The Poisson summation can also be applied for sums over bounded
ranges by multiplying f by some cutoff function. This is also used in applications, although
estimating the resulting oscillatory integrals can get messy because the Fourier transform of
a non-continuous cutoff function will be rather badly behaved. To mitigate these difficulties,
sometimes one may choose to use a smooth cutoff function instead.

3. Relationship between Theorem 1 and Theorem 2

With the formulas stated as they are above, it’s easy to compare the two. Note that the
term

∫
R f(x) dx is present in both. Hence, both Poisson summation and Euler-Maclaurin can

be thought of as giving an exact expression for the discrepancy between the sum
∑

n∈Z f(n)
and the integral

∫
R f(x) dx. The Poisson summation formula says that this discrepancy is∑

m̸=0

∫
R
f(x)e(mx) dx

whereas the Euler-Maclaurin formula says it’s

−
∫
R
f ′(x)s(x) dx.

To go from one expression to the other, we can use (1) integration by parts and (2) Fourier
inversion. This is completely unsurprising since these are exactly what was used to prove the
two formulas in the first place. The derivation is as follows.∑

m̸=0

∫
R
f(x)e(mx) dx = −

∑
m ̸=0

∫
R
f ′(x)

e(mx)

2πim
dx

= − lim
M→∞

∫
R
f ′(x)

∑
0<|m|≤M

e(mx)

2πim
dx

= −
∫
R
f ′(x) lim

M→∞

∑
0<|m|≤M

e(mx)

2πim
dx

= −
∫
R
f ′(x)s(x) dx.

In the last two equalities we have used the dominated convergence theorem and the fact that the

Fourier series
∑

0<|m|≤M
e(mx)
2πim converges boundedly to the sawtooth function s(x) as M → ∞

(except on a set of measure zero2).

1Actually the usual definition of the Bernoulli polynomials differs by a factor of k!.
2When x is an integer, this series sums to zero which is different from how we defined s(x) earlier. Note

that s(x) is discontinuous at these points, and zero is value halfway between limiting value from the left and the
limiting value from the right. This is a completely general phenomenon for the Fourier series of functions with
jump discontinuities. The “correct way” to define s(x) is to set it equal to zero at these points, so that it agrees
with its Fourier series everywhere.
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The derivation above gives another perspective on why the sawtooth function appears in the
Euler-Maclaurin formula. If we integrate by parts k times, we can also derive expressions for
the functions sk discussed in Remark 1. Indeed, this gives

sk(x) =
∑
m∈Z
m̸=0

e(mx)

(2πim)k
.

Note that for k ≥ 2 the convergence is absolute and uniform, so the analysis is even easier to
deal with in this scenario.

Lastly, we can consider the k = 0 case. Then we have the nonconvergent Fourier series
expansion

s0(x) =
∑
m∈Z
m̸=0

e(mx).

In order to make sense of this rigorously, one needs to interpret s0 as a generalized function
(e.g. a tempered distribution). Writing down the Euler-Maclaurin formula in this case, we have∑

n∈Z
f(n) =

∫
R
f(x) dx+

∫
R
f(u)s0(x) dx.

Here we think of f as a test function, so the formula states an equality for tempered distributions.
The distribution on the left-hand side is the “Dirac comb”, and the distribution on the right-
hand side is Lebesgue measure plus s0. Taking the Fourier transform of both sides leads to a
simple interpretation of this. The Fourier transform of the Dirac comb is the Dirac comb (this
is a restatement of the Poisson summation formula), the Fourier transform of Lebesgue measure
is an atomic probability measure with a single atom at x = 0 (i.e. the Dirac delta function),
and the Fourier transform of s0 is simply the atomic measure with an atom at each nonzero
integer point.
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